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SUMMARY

Lambda–omega systems provide a universal model to investigate two-species reaction di�usion prob-
lems. In the case of fast reaction kinetics and small di�usion, these systems evolve to turbulent
behaviour. A class of open-loop optimal control problems governed by lambda–omega systems in the
turbulent regime is investigated. Optimal solutions are characterized by optimality systems consisting
of two pairs of reaction di�usion equations with opposite time orientation. These systems are solved
by a space–time multigrid scheme suitable for the turbulent setting. Numerical examples are given
where the control drives the chaotic system to form regular patterns. Copyright ? 2005 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Many biological [1], chemical [2], and physiological [3] processes can be modelled by reaction
di�usion systems where the reaction kinetics exhibit a periodic limit cycle behaviour via a
Hopf bifurcation. In the case of two-species dynamics, in the vicinity of the Hopf bifurcation,
these models are similar to lambda–omega systems; see Reference [4]. We consider lambda–
omega (�–!) systems with distributed control of the form
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Figure 1. Solution y1 of (1)–(2) without control for �=1 (left) and �=2 (right) and �=10−4
with homogeneous Neumann boundary conditions, at t=200 and �= (0; 1)2. Initial conditions are
given by y1 = (x1 − 1

2 )=10 and y2 = (−x2 + 1
2 )=20. (Dark regions correspond to negative values, bright

regions correspond to positive values.)

where s2 =y21 +y22, �(s) and !(s) are real functions of s, and u1; u2 ∈L2(U ), U =�′ × (0; T ),
�′ ⊂�, represent distributed control functions with support on the subdomain �′. Here, � is
the di�usion coe	cient and R : L2(U )→L2(Q) is an extension operator de�ned as follows:
Rui= ui in U and Rui=0 in Q\U . We focus on a representative functional form of � and !
which was proposed in Reference [5] to model chemical turbulence

�(s)=1− s2 and !(s)= − �s2 (2)

Equations (1)–(2) can also be written in their complex form

 t =  − (1 + i�)| |2 + �� (3)

where  =y1 + iy2, which is a special case of the complex Ginzburg–Landau model. These
equations have a long history in physics as a generic amplitude equation near the onset of
instabilities that lead to chaotic dynamics in �uid mechanical systems; see, e.g. Reference [6].
Taking the complex conjugate of (3) and changing the sign before � keeps the equation of
motion invariant. Thus, only |�| is the essential parameter.
System (1)–(2) possesses spiral wave solutions which persist inde�nitely. In Figure 1,

snapshots of uncontrolled solutions for the case �=1 (left) and for �=2 (right) are shown.
As � becomes larger than a threshold value, spiral wave solutions become unstable and

nucleate spontaneously as �nite singularities of the evolution of the temporal phase ( = sei�(t))
giving rise to turbulence; see Figure 1 (right). The occurrence of spatio-temporal structures,
like plane waves, spiral waves, and sustained turbulence, is due to instability inherent to
the system. In order to obtain solutions whose amplitudes persist inde�nitely the di�usion
rate � has to be chosen su	ciently small. While this condition is necessary to have pattern-
like solutions, the onset of chemical turbulence is due to instability of these solutions as �
becomes su	ciently large.
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We discuss open-loop control problems governed by lambda–omega systems in the turbulent
regime. In the context of chemical reactions involving ionic species, the control may represent
an electric �eld. In this case, control may be required to drive the system to form a desired
pattern, or to avoid transition to chaos, which would destroy desired electrical properties [7].
To formulate the optimal control problem, we de�ne the following objective function:

J (y; u)=
2∑

i=1

(
1
2

‖yi − yid‖2L2(Q) +
�i
2

‖Rui‖2L2(Q)
)

(4)

where y=(y1; y2) and u=(u1; u2), and yid ∈L2(Q) represent desired trajectories. The values
of the weights �i¿0 determine the ‘importance’ of the cost of the controls.
Our optimal control problem is formulated as follows:{

minu∈[L2(U )]2 J (y; u)

under the constraint that the �–! system (1) − (2) is satis�ed:
(5)

Solutions to (5) are characterized by optimality systems, representing �rst-order necessary
conditions for a minimum. In the present case, the optimality system consists of (1)–(2), the
following adjoint equations for the adjoint variables p=(p1; p2) (marching backwards):
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and the optimality conditions

�1u1 − R∗p1 = 0 and �2u2 − R∗p2 = 0 (7)

where R∗ denotes the adjoint of R (the restriction from Q to U ); for the derivation of (6)
and (7) see Reference [8]. On the lateral boundary of Q, homogeneous Neumann boundary
conditions are imposed for y and thus for p. In addition, y0 = (y10; y20) denotes the initial con-
ditions for the state variables and the terminal condition for the adjoint variables is given by
(p1(·; T ); p2(·; T ))= (0; 0) in �. In the sequel, we refer to (1)–(2), (6), and the optimality con-
ditions (7), including the initial, terminal, and boundary conditions, as the optimality system.

2. DISCRETIZATION AND MULTIGRID METHOD

The optimality system is discretized by �nite di�erences and the Euler scheme. Let us denote
by {�h}h¿0 a sequence of uniform grids and assume for simplicity that � is a square. The
Laplacian with homogeneous Neumann boundary conditions is approximated by the common
�ve-point stencil and denoted by �h. Neumann boundary conditions are implemented by
considering the di�erential equations on the boundary and using second-order centred �nite
di�erences to eliminate the (ghost) variables outside of the domain.
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Let us denote by �t=T=Nt the time step size and de�ne the space–time grid

Qh;�t = {(x; tm): x∈�h; tm=(m − 1)�t; 16m6Nt + 1}
On this grid, ym

h and pm
h denote the state and adjoint grid functions at time level m. The

action of the backward and forward time di�erence operators on ym
h and pm

h is de�ned by

@+t y
m
h =

ym
h − ym−1

h

�t
and @−

t pm
h =

pm+1
h − pm

h

�t

respectively; see Reference [9] for more details. For grid functions de�ned on Qh;�t we use the
discrete L2(Q) scalar product with norm ‖vh;�t‖0 = (vh;�t ; vh;�t)1=2L2h;�t(Qh;�t)

, where (vh;�t ; wh;�t)L2h;�t(Qh;�t)

= �th2
∑

(x;t)∈Qh;�t
vh(x; t)wh(x; t). In what follows, we assume for simplicity su	cient regularity

of the data, yiT ; yid; yi0, such that these functions are properly approximated by their values
at grid points.
The optimality system is characterized by reaction di�usion equations with opposite time

orientation. Because of the presence of the reaction terms, a forward–backward sequential
solution approach does not allow a robust implementation of the time coupling between the
state and adjoint variables. For this reason a space–time multigrid scheme was proposed in
Reference [9] to solve parabolic optimality systems in one shot in the whole space–time
domain.
The core element of the multigrid approach in Reference [9] was a pointwise collective

Gauss–Seidel smoothing applied to the set of state and adjoint variables, consistently with the
opposite time-orientation. However, for small � required for turbulent evolution, pointwise
smoothing is not appropriate because the coupling in the space directions is too weak. To
overcome this problem, collective t-line-relaxation of the optimal control variables is consid-
ered. One step of this smoothing procedure, denoted by S, can be described as follows. At
the space grid-point indexed by ij, consider the discrete optimality system for all time steps.
For simplicity, we can plug in the optimality conditions (7) into (1) to eliminate the control
variables. Therefore, we obtain a block-tridiagonal system at each spatial grid point ij, where
each block is a 4× 4 matrix corresponding to the two pairs (y1; y2) and (p1; p2) at a certain
time level. Notice that we consider the terms within brackets [ ] in (1) and (6) as frozen
during the smoothing step. Block-tridiagonal systems can be solved e	ciently with O(Nt)
e�ort.
We now give a short description of our algorithm based on the full approximation stor-

age (FAS) multigrid framework [10]. Let us consider L grid levels indexed by k=1; : : : ; L,
where k=L refers to the �nest grid. The mesh of level k is denoted by Qk =Qhk ; �tk , where
hk = h1=2k−1 and �tk = �t, thus we employ semicoarsening in space. Any operator and variable
de�ned on Qk is indexed by k.
The optimality system at level k with given initial, terminal, and boundary conditions is

represented by the following nonlinear equation:

Ak(wk)=fk; wk =(yk; pk) (8)

The action of one FAS-cycle applied to (8) is expressed in terms of the (nonlinear) multigrid
iteration operator Bk . Starting with an initial approximation w(0)k , the result of one FAS–
V (�1; �2)-cycle is denoted by wk =Bk(w

(0)
k )fk .
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2.1. Multigrid FAS–V(�1; �2)-Cycle

Set B1(w
(0)
1 )≈A−1

1 (e.g. iterating with S1 starting with w(0)1 ). For k=2; : : : ; L de�ne Bk in
terms of Bk−1 as follows:

1. Set the starting approximation w(0)k .
2. Pre-smoothing. De�ne w(l)k for l=1; : : : ; �1, by w(l)k = Sk(w

(l−1)
k ; fk).

3. Coarse grid correction. Set w(�1+1)k =w(�1)k + I kk−1(q − Î k−1k w(�1)k ), where

q=Bk−1(Î k−1k w(�1)k )[I k−1k (fk − Ak(w
(�1)
k )) + Ak−1(Î k−1k w(�1)k )]

4. Post-smoothing. De�ne w(l)k for l = �1 + 2; : : : ; �1 + �2 + 1, by w(l)k = Sk(w
(l−1)
k ; fk).

5. Set Bk(w
(0)
k )fk =w(�1+�2+1)

k .

In our implementation, we choose I k−1k to be the full-weighted restriction operator [11] in
space with no averaging in the time direction. The mirrored version of this operator applies
also to the boundary points. We choose Î k−1k to be straight injection. The prolongation I kk−1
is de�ned by bilinear interpolation in space. No interpolation in time is needed. Indeed, other
choices of prolongation and restriction operators are possible; see in particular Reference [12].

3. NUMERICAL EXPERIMENTS

Results of experiments are reported to demonstrate some convergence properties of our algo-
rithm and in general to evaluate the ability of the distributed control functions to drive the
system from a chaotic state to an ordered one. The tracking ability is expressed in terms of
values of the tracking functional, ‖yi − yid‖0.
All experiments are performed with the FAS–V (2; 2)-cycle multigrid scheme described in

the previous section. The coarsest space grid consists of four intervals in each direction.
The initial conditions for the state variables on �=(0; 1)× (0; 1) are de�ned as the solution

of the freely evolving lambda–omega system with �=2 at t0 = 200, starting with

y1 = (x1 − 1=2)=10 and y2 = (−x2 + 1=2)=20

The resulting disordered states (see Figure 1) represent the initial conditions for the optimal
control problem of tracking the following desired state trajectories

y1d(x; t) =

{
sin2(2�t) if |x1 − x2| ¡ 0:2 or |x1 + x2 − 1| ¡ 0:2

0 otherwise

y2d(x; t) =

{
0 if |x1 − 0:5| ¡ 0:1 or |x2 − 0:5| ¡ 0:1

cos2(2�t) otherwise

In the �rst series of experiments �′=� and R is the identity on L2(Q). The optimal con-
trol problem is considered in the interval [t0; t0 + 1]. Results for this case are reported in
Table I. We observe fast convergence independent of the mesh size, which improves as the

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:879–885
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Table I. Convergence and tracking properties depending on �1 = �2 = �; �=2, �=10−4. Here 	 is
the average multigrid convergence factor [11].

� Nx ×Ny ×Nt 	 ‖y1 − y1d‖0 ‖y2 − y2d‖0
10−1 64× 64× 50 0.04 3:65× 10−1 3:92× 10−1

10−3 64× 64× 50 0.006 6:26× 10−2 1:03× 10−1

10−5 64× 64× 50 ¡0:001 1:91× 10−3 3:65× 10−3

10−7 64× 64× 50 ¡0:001 2:01× 10−5 3:84× 10−5

10−1 128× 128× 100 0.15 3:78× 10−1 4:04× 10−1

10−3 128× 128× 100 0.004 7:28× 10−2 1:20× 10−1

10−5 128× 128× 100 ¡0:001 4:84× 10−3 8:85× 10−3

10−7 128× 128× 100 ¡0:001 5:74× 10−5 1:05× 10−4
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Figure 2. Controlled state y1 at t=0; 0:18; 0:48; 0:78.

values of �i become smaller. This fact shows robustness of the multigrid scheme with block
smoothing with respect to the weights �i of the control. Further numerical experiments show
that the multigrid iteration is not sensitive to the value of the reaction parameter � and to
the mesh size. All these facts are in agreement with results of local Fourier analysis given in
References [8, 9]. Similarly, we can show that, as � increases, the convergence properties of
the space–time multigrid scheme approach those of standard multigrid scheme for Poisson
problems. Notice in Table I that, as the values of � increase, naturally larger values of the
tracking errors are obtained.
Next we consider the case where the control acts on the annular domain given by

�′= {x∈�: − cos(3�
√
(x1 − 1=2)2 + (x2 − 1=2)2 + �=6)¿ 0}

Although the coupling between the state and the control variables is weaker now, the
computational performance of the space–time multigrid remains similar as in the previous
case. To show the tracking behaviour we depict in Figure 2 snapshots of the controlled
state y1. We observe that on the subdomain �′, the distributed control drives the system from
a chaotic state to an ordered one. However, the presence of the control does not appear to
a�ect the evolution of the turbulent patterns outside of the support of u. A similar phenomenon
can be experienced in the case of boundary control which thus seems unsuitable to in�uence
the chaotic lambda–omega system in any meaningful way. This can be attributed to the very
small di�usivity in the system.
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